top of page
Search

Development Terawatt-Level Power Generation System Comparative Analysis of Power Generation Methods

  • Writer: Kazuto Kamuro
    Kazuto Kamuro
  • Sep 23, 2023
  • 8 min read

Professor Kamuro's near-future science predictions:

Development of a Terawatt-Level Power Generation System and Comparative Analysis of Power Generation Methods



✼••┈┈••✼••┈┈••✼••┈┈••✼••┈┈••✼••┈┈••✼••┈┈••✼

Development of a Terawatt-Level Power Generation System and Comparative Analysis of Power Generation Methods


1. What is the single power generation method with a capacity exceeding one terawatt?

The Artificial Energy Evolution Research Institute (AERI HP: https://www.aeri-japan.com/), based in Pasadena, California, has been dedicated to the research and development of a single power generation method capable of producing power exceeding the petawatt (1,000 terawatts) range. Today, we officially announce 'the CHEGPG system,' a closed-cycle heat exchange power generation system equipped with petawatt-class power generation capacity exceeding one terawatt, making it the world's first of its kind.

Traditional power generation methods such as thermal, wind, nuclear, and renewable energy sources are limited in their ability to supply electrical power, typically capped at several tens of megawatts, even when multiple facilities or various generation methods are combined. To date, no single power generation method has achieved terawatt-level power supply capabilities. the CHEGPG system, a closed-cycle heat exchange power generation system equipped with binary engines, is the only means to establish a large-scale energy system capable of providing stable and sustained terawatt to petawatt-level electrical power supply 24 hours a day.


2. Power Generation Method with Terawatt-Level Capacity: the CHEGPG system

2.1 Megawatt-Level Power Generation Methods:

a. Nuclear Power: Nuclear power is a high-output generation method, with a single nuclear reactor capable of producing approximately 1 gigawatt of power. However, achieving power generation exceeding 1,000 terawatts solely through nuclear power is technically challenging. It typically remains in the 1 to 10 gigawatt range. Moreover, the issues of decommissioning, disposal of spent nuclear fuel, nuclear contamination, and radioactive waste disposal are significant challenges, making it unlikely that the number of nuclear power plants will significantly increase in the future, even if certified as a renewable energy source by the EU.


b. Solar Power: Solar power has the potential to generate large-scale power, on the order of 10 megawatts, by installing solar panels over a wide area. However, achieving terawatt-class power generation using solar power requires the construction of large-scale energy systems combining multiple power plants, necessitating vast areas of land, often resulting in environmental destruction, and requiring significant investments in energy storage facilities to ensure stability. Realistically, achieving terawatt-class energy systems through solar power is challenging.


c. Wind Power: The cumulative installed capacity of wind power in Japan was 4,581 megawatts (approximately 4.6 gigawatts) as of the end of 2021. While combining multiple wind turbines in offshore wind farms can achieve significant power capacity, it is practically impossible to reach 1,000 terawatts or more, even with such methods. Wind power also requires extensive land or suitable offshore locations, which are limited in availability.


d. Hydropower: The only power generation method with the potential to provide over 1,000 terawatts per unit is hydropower, achieved by combining large-scale hydropower plants. However, this method has geographical limitations, and it is practically impossible to combine a sufficient number of large hydropower plants.


e. Geothermal Power: Geothermal power harnesses the heat generated by Earth's core and is considered a renewable energy source. It offers stable power generation regardless of weather conditions or time of day. While it has the potential to provide significant power capacity, it also faces challenges such as exploration costs, reduced geothermal resource availability, opposition from local communities and the tourism industry, high initial costs, and susceptibility to natural disasters.


2.2 Advancements in Power Generation and the Quest for Energy Security

Power Reception at the Terawatt Scale:

While wet-type geothermal power generation using hot water and steam offers the potential for large-scale power supply in specific regions, the limited availability of geothermal resources in thermal spring areas, as well as concerns about underground water depletion, land subsidence, earthquakes, and strong opposition from local stakeholders, make it practically impossible to achieve over 1,000 terawatts of power capacity with a single geothermal power generation method.


a. In conventional power generation methods, it has been practically challenging to achieve stable and sustained power supply exceeding 1,000 terawatts (1 terawatt = 1 trillion watts) by combining multiple power generation methods per unit (single generation method). Achieving stable and sustained power supply exceeding 1,000 terawatts requires the integration of different energy sources (such as nuclear, wind, solar, etc.) and the establishment of an international energy network, which is virtually impossible. Furthermore, achieving stable and sustained power supply at this scale necessitates energy decentralization and efficient power transmission. However, significant transmission losses and environmental impacts make achieving stable and sustained power supply exceeding 1,000 terawatts difficult, even when combining different energy sources.


b. Realistic power generation methods such as thermal, renewable energy (solar, wind), nuclear, and hydropower methods face significant challenges in providing terawatt-level power capacity, often requiring the combination of multiple facilities.


c. Bioreactor having the potential to generate several gigawatts of power. However, constructing and operating nuclear reactors with power capacity exceeding 1 terawatt is not a common practice. To achieve terawatt-level power generation through nuclear power, numerous nuclear reactors would need to be constructed and integrated, which is practically impossible.


d. Other power generation methods based on renewable energy sources (solar, wind, etc.) or fossil fuels (coal, heavy oil, LNG, etc.) can provide gigawatt-class power capacity but typically require the combination of multiple facilities to achieve gigawatt-scale energy supply.


2.3 Energy Security:

a. Power generation methods relying on fossil fuels (coal, heavy oil, LNG, etc.), which inevitably depend on near 100% foreign imports, are distinct from AERI's closed-cycle heat exchange power generation system, the CHEGPG system, which utilizes domestically produced energy sources. Unlike the CHEGPG system, which is capable of achieving near-complete energy self-sufficiency within Japan, power generation methods relying on fossil fuels require energy sourcing from overseas. Ensuring a permanent, sustainable, and internationally accessible energy infrastructure becomes imperative. This poses a significant threat to Japan's energy security, especially when considering the imminent challenges related to energy depletion and competition in an environmentally conscious world.


b. Renewable energy-based power generation methods (such as solar and wind) face challenges not only due to their unstable output (Issue 1) but also in addressing instantaneous peak power demand (Issue 2). Integrating diverse energy sources may be a potential solution to Issues 1 and 2, but even with integration, it remains uncertain whether their unstable output can be effectively resolved.


c. Furthermore, the closed-cycle heat exchange power generation system, the CHEGPG system, stands apart as it can be established almost anywhere within Japan's territory, unrestricted by thermal spring areas or hot water sources. It can independently provide 1,000-terawatt-class enormous electrical power continuously and stably for 24 hours to the region, using self-sustaining geothermal energy. This remarkable capability distinguishes it as the only technically feasible solution to meet the terawatt-level power demands and addresses energy security concerns.


3. Estimating Power Shortages Resulting from the Proliferation of Electric Vehicles

3.1 Statement by Toyoda:

Akio Toyoda, President of the Japan Automobile Manufacturers Association, stated in a December 2020 press conference that he had conducted calculations regarding the implications of a complete transition to electric vehicles (EVs). He mentioned that if all annual passenger vehicle sales in Japan (approximately 4 million units) were to become EVs, and the entire vehicle fleet (currently at around 62 million units) transitioned to EVs, it would require a 10-15% increase in power generation capacity during peak demand compared to the current levels. Toyoda further noted that this capacity increase would be equivalent to approximately 10 nuclear power plants or around 20 thermal power plants.


Additionally, Toyoda's calculations revealed the need for significant infrastructure investments, ranging from 14 to 37 trillion yen, to support the charging facilities required for widespread EV adoption. Furthermore, the supply capacity of batteries for EVs would need to increase approximately 30-fold compared to current levels, with an estimated investment of around 2 trillion yen. The power required to charge EVs upon completion would be equivalent to one week's worth of household consumption.


3.2 Verification:

a. The output of Tokyo Electric Power Company's Kashiwazaki Nuclear Power Plant ranges from 1.1 to 1.356 million kilowatts (kW) per unit (boiling water-type light-water reactor at 1.1 million kW, improved boiling water-type light-water reactor at 1.356 million kW). The output per unit of Kansai Electric Power Company's Oi Nuclear Power Plant is 1.18 million kW. While these are representative examples within Japan, the output of existing nuclear power plants can generally be estimated at around 1.1 million kW per unit. With ten such plants, the total power generation capacity would reach 11 million kW.


b. Daily electricity consumption in Japan reached its peak in 2001 and has since shown a slight decrease trend. In January 2022, it stood at 151 million kW, with 10% of this amount being 15 million kW over a 24-hour period, closely aligning with Toyoda's statement regarding "10-15% of existing nuclear power."


c. Assuming a standard EV battery capacity of 40 kWh (as exemplified by the Nissan Leaf), calculations based on the increase in power generation capacity (equivalent to 11 million kW) indicate that it would be possible to charge 275,000 EVs to full capacity. This represents only 0.4% of the current domestic EV fleet of 62 million units.


d. If 10% of the 6,200 units (620,000 units) charge daily, it would require 248 million kW (2,480,000 kW). Given that 1 gigawatt equals 1 billion watts, this amounts to 0.248 GW. To enable 10% of all EVs to charge simultaneously, 23 nuclear power plants (0.248 GW) would be needed. For 50% of all EVs to charge, 113 nuclear power plants (1.24 GW) would be required. To accommodate 80% of all EVs charging, 180 nuclear power plants (1.984 GW) would be necessary. Finally, to support the charging of all 100% of EVs, 230 nuclear power plants (2.48 GW) would be needed.


e. As previously discussed, fulfilling the potential for gigawatt-class power generation while ensuring safety, stability, and sustainability remains a challenge for various power generation methods. This includes nuclear power, which faces unresolved issues related to decommissioning, disposal of spent nuclear fuel, radioactive contamination, and ocean disposal. Additionally, renewable energy sources like solar power require vast land areas, and wind power depends on specific geographical conditions, making large-scale implementation difficult.


Considering the factors mentioned above, it becomes evident that the only solution capable of addressing the critical issues of (1) energy security, (2) climate change mitigation, (3) achieving carbon neutrality, and (4) zero CO2 emissions, all at once, is the Closed Heat Exchange Generator with Pyroelectric Generator (CHEGPG) system, which possesses a power generation capacity of 1,000 terawatts (1 terawatt = 1 trillion watts = 1,000 MW) per unit, providing a comprehensive and unparalleled solution.


END



**************************************************************************

Quantum Brain Chipset & Bio Processor (BioVLSI)


Prof. PhD. Dr. Kamuro

Quantum Physicist and Brain Scientist involved in Caltech & XYRONIX Associate Professor and Brain Scientist in XYRONIX CPRPORATION

IEEE-USA Fellow

American Physical Society Fellow

PhD. & Dr. Kazuto Kamuro

email: info@usaxyronix.com

--------------------------------------------

【Keywords】 

#ArtificialBrain #ArtificialIntelligence #QuantumSemiconductor #Quantumphysics #brain implant-type biocomputer #BrainScience #QuantumComputer #AI #NeuralConnectionDevice #QuantumInterference #QuantumArtificialIntelligence #GeoThermalpoAERIr #MissileDefense #MissileIntercept #NuclearDeterrence #QuantumBrain #DomesticResiliency #Quantumphysics #Biologyphysics #Brain-MachineInterface #BMI #BCI #nanosizeSemiconductors #UltraLSI #nextgenerationSemiconductors #opticalSemiconductors #NonDestructiveTesting #LifePrediction #UltrashortpulseLasers #UltrahighpoAERIrLasers #SatelliteOptoelectronics #RemoteSensing #GeoThermalpoAERIr #RegenerativeEnergy #GlobalWarming #CimateCange #GreenhouseGses #Defense #EnemystrikeCapability #QuantumBrain #QuantumBrain #QuantumArtificialIntelligence #ArtificialBrain #QuantumInterference #cerebralnerves #nextgenerationDefense #DefenseEectronics #Defense #RenewableEergy #LongerInfraStructurelife #MEGAEarthquakePrediction #TerroristDeterrence #NonDestructivetesting #LifespanPrediction #ExplosiveDetection #TerroristDetection #EplosiveDetection #VolcaniceruptionPrediction #EnemybaseAtackCpability #ICBMInterception #RemoteSensing #BioResourceGowthEnvironmentAssessment #VolcanicTremorDetection #volcanicEruptiongGasDetection #GreenhousegasDetection #GlobalWarmingPrevention #ArtificialIntelligence #BrainScience #AI #MissileDefense #MissileInterception #NuclearAERIaponsdisablement #Nuclearbaseattack #DefensiveAERIapons #eruptionPrediction #EarthquakePrediction #QuantumBrain #QuantumConsciousness #QuantumMind #QuntumBrain #QuntumBrainComputing #QuntumBrainComputer #AtificialBrain #ArtificialIntelligence #BrainComputing #QuantumBrainChipset #BioProcessor #BrainChip #BrainProcessor #QuantumBrainChip #QuantumBioProcessor #QuantumBioChip #brain-computer #brain implant-type biocomputer #BrainInplant #Reprogrammable #self-assembly #MolecularComputer #MolecularBrain implant-type biocomputer #military #BrainImplant #militaryhardware #militaryweapon #unmannedweapon #combataircraft #robotarmor #militaryweapon #cyborg #soldier #armor #strategicweapon #combatKilling #AntiNuclearwarfare #roboticweapons #weaponsindustry #weaponofmassdestruction #MilitarySoldier #RobotSOLDIER #BrainImplant #chemicalWarefare #chemicalBattlefield #WarEconomic #HumanitarianStrategy #NextGenerationWarfare #BiologicalWarefare #BiologicalBattlefield #EnemyBaseAttackAbility



#brain #implant-type #biocomputer #BrainInplant #Reprogrammable #selfassembly #MolecularComputer #MolecularBrain #implant-type #biocomputer # #military #BrainImplant #militaryhardware #militaryweapon #unmannedweapon #combataircraft #robotarmor #militaryweapon #cyborg #soldier #armor #strategicweapon #combatKilling #AntiNuclearwarfare #roboticweapons #weaponsindustry #weaponofmassdestruction #MilitarySoldier #RobotSOLDIER # #BrainImplant #chemicalWarefare #chemicalBattlefield #WarEconomic #HumanitarianStrategy #NextGenerationWarfare #BiologicalWarefare #BiologicalBattlefield #EnemyBaseAttackAbility #LaserDefenseSystem #HAMIIS #PetawattLaser #HexaWattLaser #UltraHighPowerLaser #ChirpedPulseAmplification #CPA #OpticalParametricAmplification #OPA #HighEnergyPhysics #Defense #Security #MissileDefenseSystem #LaserInducedPlasma #Supernovae #Pulsar #Blackhole #FemtosecondLaser #CavityDumping #ModeLocking #FemtosecondPulse #LaserSpectroscopy #UltrafastSpectroscopy #MultiphotonMicroscopy #NonlinearOptics #FrequencyConversion #HarmonicHGeneration #ParametricAmplification #MaterialProcessing #Micromachining #SurfaceStructuring #LaserAblation #MultiphotoMicroscopy #Ophthalmology #LAM #LandAttackMissiles #ASWM #AntiSubmarineWarfareMissiles

 
 
 

Comments


株式会社ザイロニクス

​Xyronix co.

​有限会社知財戦略研究所

info@usaxyronix.com

045-286-9421

All rights reserved@2025

#ArtificialBrain #AI #ArtificialIntelligence #armor #AntiNuclearwarfare #ArmorSystem #QuantumSemiconductor #QuantumComputer #QuantumInterference #QuantumArtificialIntelligence #Quantumphysics #QuantumConsciousness #QuantumMind #QuntumBrainComputing #QuntumBrainComputer #QuantumBrainChipset #QuantumBrainChip #QuantumBioProcessor #QuantumBioChip #Quantumbrain #brain #biocomputer #BrainScience #Biologyphysics #BrainMachineInterface #BMI #BCI #BioResourceGowthEnvironmentAssessment #BrainScience #BrainComputing #BioProcessor #BrainChip #BrainProcessor #braincompute #BrainInplant #BiologicalWarefare #BiologicalBattlefield #Blackhole #BMILSI #NeuralConnectionDevice #nanosizeSemiconductors #nextgenerationSemiconductors #NonDestructiveTesting #nextgenerationDefense #Nuclearweaponsdisablement #Nuclearbaseattack #NextGenerationWarfare #NonlinearOptics #Nonlinear #NonlinearInteraction #renewableenergy #GeoThermalpower #GlobalWarming #GreenhouseGases #GreenhousegasDetection #GlobalWarmingPrevention #Globalglobalwarming #MissileDefense #MissileIntercept #NuclearDeterrence #MEGAEarthquakePrediction #MissileInterception #MolecularComputer #MolecularBrain #military #militaryhardware #militaryweapon #MilitarySoldier #MissileDefenseSystem #ModeLocking #MultiphotonMicroscopy #MaterialProcessing #Micromachining #MultiphotoMicroscopy #MilitaryApplication #weaponsindustry #weaponofmassdestruction #WarEconomic #opticalSemiconductors #OpticalParametricAmplification #OPA #Ophthalmology #LifePrediction #LongerInfraStructurelife #LifespanPrediction #LaserDefenseSystem #LaserInducedPlasma #LaserSpectroscopy #LaserAblation #LaserArmor #UltrashortpulseLasers #UltrahighpowerLasers #unmannedweapon #UltraLSI #UltrafastSpectroscopy #SatelliteOptoelectronics #selfassembly #soldier #strategicweapon #Security #Supernovae #SurfaceStructuring #SteerableMirror #TerroristDeterrence #TerroristDetection #TacticalLaserWeapon #TacticalLaser #RemoteSensing #RegenerativeEnergy #RenewableEergy #Reprogrammable #robotarmor #roboticweapons #RobotSOLDIER #Climatechange #cerebralnerves #combataircraft #cyborg #combatKilling #chemicalWarefare #chemicalBattlefield #ChirpedPulseAmplification #CPA #CavityDumping #CounterUAV #CounterUAS #Defense #DefenseElectronics #Defensiveweapons #DomesticResiliency ##Dermatology #DirectedEnergyWeapons #EnemystrikeCapability #ExplosiveDetection #EplosiveDetection #EnemybaseAttackCapability #eruptionPrediction #EarthquakePrediction #EnemyBaseAttackAbility #ElectronDynamics #Effects  #VolcaniceruptionPrediction #VolcanicTremorDetection #volcanicEruptionGasDetection #ICBMInterception #implanttype #HumanitarianStrategy #HAMIIS #HexaWattLaser #HighEnergyPhysics #HighEnergyLaser #PetawattLaser #Pulsar #ParametricAmplification #FemtosecondLaser #FemtosecondPulse #FrequencyConversion #HarmonicHGeneration #FixedMirror

#国土強靭化 #核兵器無効化  #核兵器防御 #大量破壊兵器無効化 #温暖化防止 #共生社会実現 #食料自給自足 #非核 #防衛 #軍事 #テロ抑止 #高齢福祉抑制 #持続可能 #社会インフラ #知的財産 #パテントロール #権利 #出願 #特許 #弁理士 #ライセンス業務 #訴訟支援 #知財高裁 #脳科学 #情報技術 #IT #応用物理 #AP #分子生物学 #バイオテクノロジー #MEGA地震予測システム #噴火予測 #噴火予知 #噴火予想 #地震予知 #地震予兆 #人工衛星搭載型 #温室効果ガス検知システム #植物バイオ資源育成 #環境評価システム #戦闘機 #自爆テロ #爆発物検知 #銃検知 #銃火器検知 #千里眼 #天通眼 #超低高度衛星 #超高速移動体 #非破壊検査システム #危険物検知 #劣化診断 #レーザー劣化診断 #寿命予知 #寿命診断 #非破壊検査 #非接触検査 #高速道路 #トンネル検査 #橋梁検査 #レール検査 #新幹線 #ドクターイエロー #リアルタイム #鉄道 #リモート診断 #insitu #フェムト秒レーザー #高高度電磁パルス #HEMP #高高度核爆発 #電磁パルス #コンプトン効果 #核弾頭ミサイル #核爆発 #核兵器 #核ミサイル #EMP攻撃 #ガンマ線 #X線 #大量破壊兵器 #非致死性 #大陸間弾道ミサイル #ICBM #対ICBM #ミサイル攻撃 #弾道ミサイル防衛 #核兵器無力化 #人工知能 #バイオコンピューター #AI #AI支援型 #地熱発電 #再生可能エネルギー #コージェネレーション発電 #バイナリー発電 #スマートグリッド #気候変動 #異常気象 #原子力発電 #温暖化 #環境破壊 #環境保全 #地球環境 #温暖化ガス #温室効果ガス #都市型農業 #SDGS #ブレインコンピュータインタフェース #Braincomputer #Interface #BCI #ブレインマシンインターフェース #Brainmachine #BMI #BMILSI #神経ネットワーク #神経工学 #軍事用ロボット #サイバネティクス #第6世代コンピュータ #ディープラーニング #意識駆動形 #戦闘用ロボットソルジャー #推論 #レーザーシステム #迎撃レーザーシステム #ミサイル迎撃 #戦闘機 #防衛 #国防 #新世代ミサイル防衛 #人工培養肉 #

#人工頭脳 #量子半導体 #量子物理  #量子コンピューター #神経接続素子 #量子干渉 #量子人工知能 #ミサイル防衛 #核抑止力 #量子脳 #量子物理学 #生物物理学 #ナノサイズ半導体 #超LSI #次世代半導体 #光半導体 #半導体 #寿命予測 #超短パルスレーザー #超高出力レーザー #レーザー兵器 #衛星光電子工学 #リモートセンシング #再生エネルギー #地球温暖化  #専守防衛 #敵基地攻撃能力 #脳内量子効果 #Quantum #Brain #人工脳 #脳神経 #次世代防衛 #防衛エレクトロニク  #インフラ長寿命化 #MEGA #地震予測 #テロリスト抑止 #テロリスト検知  #火山噴火予知 #敵基地攻撃 迎撃 #植物 #バイオ #資源育成 #環境評価  #火山性微動検知 #火山性噴火ガス検知 #温室効果ガス検知 #実現 #実用 #実用化 #横浜痛散堂 #痛散堂 #医者では治せない痛み #肩こり #手足のしびれ #腰痛 #頸椎 #関節のズレ #口コミ #横浜関内 #対戦闘機 #対ミサイル #次世代 #イージスアショア #空対空ミサイルシステム #迎撃システム #防衛兵器 #テロリスト対策 #コージェネレーション型マイクロバイナリー #発電システム #スマートグリット適応型 #ガストロミート #通常兵器 #無効化 #ソリューション #solution #地域猫養護 #猫の杜 #OPERA #21世紀都市型農業 #自爆テロ検知 #核基地攻撃 #Xyronixシンセサイザー #X_MPGPU #グリーン関数物理音源モデル #並列処理 #リアルタイム #高音質 #演奏表現 #知的財産権 #知財争議 #知財紛争 #パテントトロール #陸上養殖 #高級魚介 #寿司 #輸出 #次世代人工陸上オーガニック #遺伝子編集養殖魚介

bottom of page